Bmp6 Expression Can Be Regulated Independently of Liver Iron in Mice
نویسندگان
چکیده
The liver is the primary organ for storing iron and plays a central role in the regulation of body iron levels by secretion of the hormone Hamp1. Although many factors modulate Hamp1 expression, their regulatory mechanisms are poorly understood. Here, we used conditional knockout mice for the iron exporter ferroportin1 (Fpn1) to modulate tissue iron in specific tissues in combination with iron-deficient or iron-rich diets and transferrin (Tf) supplementation to investigate the mechanisms underlying Hamp1 expression. Despite liver iron overload, expression of bone morphogenetic protein 6 (Bmp6), a potent-stimulator of Hamp1 expression that is expressed under iron-loaded conditions, was decreased. We hypothesized that factors other than liver iron must play a role in controlling Bmp6 expression. Our results show that erythropoietin and Tf-bound iron do not underlie the down-regulation of Bmp6 in our mice models. Moreover, Bmp6 was down-regulated under conditions of high iron demand, irrespective of the presence of anemia. We therefore inferred that the signals were driven by high iron demand. Furthermore, we also confirmed previous suggestions that Tf-bound iron regulates Hamp1 expression via Smad1/5/8 phosphorylation without affecting Bmp6 expression, and the effect of Tf-bound iron on Hamp1 regulation appeared before a significant change in Bmp6 expression. Together, these results are consistent with novel mechanisms for regulating Bmp6 and Hamp1 expression.
منابع مشابه
Iron overload induces BMP6 expression in the liver but not in the duodenum.
BACKGROUND The bone morphogenetic protein BMP6 regulates hepcidin production by the liver. However, it is not yet known whether BMP6 derives from the liver itself or from other sources such as the small intestine, as has been recently suggested. This study was aimed at investigating the source of BMP6 further. DESIGN AND METHODS We used three different strains of mice (C57BL/6, DBA/2, and 129...
متن کاملLiver and serum iron: discrete regulators of hepatic hepcidin expression.
T o prevent pathological excesses or deficiencies, body iron balance must be tightly controlled due to the lack of a highly evolved mechanism for iron excretion. This is achieved through the liver peptide hepcidin, which efficiently regulates the processes of duodenal iron absorption, macrophage iron release and tissue iron storage, primarily in the liver. Hepcidin is released into the circulat...
متن کاملFerritin upregulates hepatic expression of bone morphogenetic protein 6 and hepcidin in mice.
Hepcidin is a hepatocellular hormone that inhibits the release of iron from certain cell populations, including enterocytes and reticuloendothelial cells. The regulation of hepcidin (HAMP) gene expression by iron status is mediated in part by the signaling molecule bone morphogenetic protein 6 (BMP6). We took advantage of the low iron status of juvenile mice to characterize the regulation of Bm...
متن کاملBmp6 Expression in Murine Liver Non Parenchymal Cells: A Mechanism to Control their High Iron Exporter Activity and Protect Hepatocytes from Iron Overload?
Bmp6 is the main activator of hepcidin, the liver hormone that negatively regulates plasma iron influx by degrading the sole iron exporter ferroportin in enterocytes and macrophages. Bmp6 expression is modulated by iron but the molecular mechanisms are unknown. Although hepcidin is expressed almost exclusively by hepatocytes (HCs), Bmp6 is produced also by non-parenchymal cells (NPCs), mainly s...
متن کاملEnhanced expression of BMP6 inhibits hepatic fibrosis in non-alcoholic fatty liver disease.
OBJECTIVE Bone morphogenetic protein 6 (BMP6) has been identified as crucial regulator of iron homeostasis. However, its further role in liver pathology including non-alcoholic fatty liver disease (NAFLD) and its advanced form non-alcoholic steatohepatitis (NASH) is elusive. The aim of this study was to investigate the expression and function of BMP6 in chronic liver disease. DESIGN BMP6 was ...
متن کامل